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Changes in Earth’s Gravity Reveal Changes in Groundwater Storage

Introduction
Newton’s Law of Universal 

Gravitation says that the acceleration 
due to gravity at any point depends on 
the surrounding mass. When the mass of 
an aquifer changes, either by recharge 
or by discharge to surface water or 
wells, the gravitational acceleration at 
the land surface also changes. Although 
this change is small, it is detectable with 
highly precise instruments. In addition 
to groundwater, gravity measurements 
are sensitive to Earth tides, barometric 
pressure changes, mass changes from 
volcanism, and other effects. Most 
of these can be accounted for, or are 
negligible, in groundwater studies. 
[Continued on page 3]

Changes in the amount of water stored in underground aquifers cause small changes in Earth’s gravitational field. 
The U.S. Geological Survey’s Southwest Gravity Program has developed methods for measuring terrestrial gravity 

changes with part-per-billion precision. The measurements allow scientists to map changes in groundwater storage and 
to improve models that simulate groundwater flow.

Relative-gravity meters measure differences 
in the force exerted on a mechanical spring as 
the meter is moved from place to place. These 
meters are highly portable but require extreme 
care during field surveys to minimize random drift 
and offsets in readings.

Absolute-gravity meters measure the acceleration 
of a mass falling in a vacuum, using a laser 
interferometer to measure distance and an atomic 
oscillator to measure time. They provide a direct 
measurement of the absolute force of gravity (about 
9.8 meters per second squared).

Superconducting gravity meters measure changes 
in the force required to levitate a sphere within a 
magnetic field. Because of the superconducting 
characteristic of the meters, the magnetic field is highly 
stable, and part-per-billion accuracy can be maintained 
over many years. (Inset shows detailed view.)

How is Gravity Measured?
The USGS Southwest Gravity Program uses three types of gravity meters to measure gravity change at the Earth’s surface—relative, absolute, and superconducting 
gravity meters. In addition to land-based measurements, gravity changes can also be measured by satellite. These sources provide similar data, but land-based 
measurements provide finer spatial resolution with lower accuracy than satellite measurements, which are highly accurate but provide only a single, average value 
of water-storage changes over several thousand square kilometers. (USGS photographs by Michael Landrum and Jeffrey Kennedy.)

As generalized in this image, a gravity measurement is sensitive to a cone-shaped region of the 
subsurface—as depth increases, the sensitivity to individual water molecules decreases, but 
the region of sensitivity expands. The result is that for a given height of water-storage change, 
the corresponding gravity change is the same (1 meter of water=42×10–8 meters per second 
squared), regardless of whether the water is stored near the land surface or at depth. The 
amount of gravity change is also independent of the porosity of the aquifer or soil.
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Gravity measurements reveal storage 
changes in the aquifer underlying 
groundwater recharge basins of 
the Southern Avra Valley Storage 
and Recovery Project of the City of 
Tucson, Arizona. The map above 
shows an aerial view of three of the 
recharge basins (RB) and gravity 
change between recharge periods 
during a March to April 2013 drying 
cycle. The graphs below compare 
infiltration from the basins, gravity 
change, and groundwater-elevation 
change from spring 2012 to spring 
2013. Gravity changes were immediate 
in response to infiltration in the basin 
adjacent to each gravity meter, 
whereas groundwater levels changed 
gradually in response to infiltration in 
all nine basins at the facility, as well 
as to other hydrologic processes in 
the region. The lack of accumulated 
gravity change after 13 months of 
recharge shows that the facility is 
transmitting water efficiently through 
the unsaturated zone above the water 
table. (Modified from Kennedy and 
others, 2016a.)
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This map, overlaid on a satellite image, shows aquifer-storage change 
beneath the riparian area along the Colorado River near San Luis, 
Arizona, during the first month of a 2014 experimental “pulse flow” that 
released about 102 million cubic meters (82,700 acre-feet) of water from 
Morelos Dam on the U.S.-Mexico border into the Colorado River Delta. 
Gravity-change data were used directly and to determine specific yield to 
convert measured depth-to-groundwater change to storage change (that 
is, to convert change in hydraulic head to a thickness of free-standing 
water). The gravity-derived increase in aquifer storage, 8.4×106 cubic 
meters, agreed well with the decrease in streamflow measured between 
the two discharge measurement stations shown on the map. (Modified 
from Kennedy and others, 2016b.)
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Since the 1980s, the U.S. Geological 
Survey (USGS) has developed field 
methods, software, and analytical 
procedures for using gravity data to aid in 
hydrologic investigations. Scientists with 
the USGS Southwest Gravity Program can 
measure terrestrial gravity changes with 
part-per-billion precision to map changes 
in groundwater storage and to improve 
models that simulate groundwater flow.

Depth to Groundwater Versus 
Gravity Change

Changes in both gravity and the depth 
to groundwater indicate changes in the 
amount of water stored in an aquifer. For 
depth-to-groundwater changes, determining 
the amount of storage change depends on 
the aquifer-storage coefficient, which is 
often poorly known and must be estimated 
based on assumptions about the aquifer. 
In confined aquifers (those between two 
impermeable layers), the storage coefficient 
may be very small, causing large depth-to-
groundwater changes even if storage change 
is small. Whereas depth-to-groundwater 
measurements indirectly indicate aquifer-
storage change, gravity change is a direct 
measurement of the change in total water 
stored in an aquifer. In most cases, the 
measured gravity change, in units of 
acceleration (for example, m/s2), can 
be converted directly to a change in the 
thickness of free-standing water, regardless 
of the depth to groundwater or the aquifer-
storage coefficient.

Groundwater levels are measured at 
a single point, which may or may not be 
representative of the aquifer. In contrast, 
the region of sensitivity of a gravity 
measurement is well defined by Newton’s 
Law and encompasses a large volume of 
the subsurface. A practical guideline is that 
sensitivity extends to a radius equal to about 
10 times the depth to groundwater. 

What Are the Hydrologic 
Applications?

Gravity-change data are useful 
for estimating aquifer-storage change, 
for estimating recharge in groundwater 
systems, and for estimating the aquifer-
storage coefficient (Pool, 2008). 

Aquifer-storage change can 
be estimated both qualitatively and 
quantitatively. For example, the gravity-
change map on page 2 shows that 
storage changes are different to the east 
and west of the groundwater-recharge 
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facility. This qualitative interpretation 
is possible because the gravity 
measurement’s region of sensitivity 
is well known and unaffected by 
subsurface properties. With other 
geophysical methods, such as those 
that depend on the electromagnetic 
or seismic properties of the Earth, the 
region of sensitivity changes based 
on the properties of the subsurface. 
Quantitative measurements of 
aquifer-storage change are possible 
by converting gravity change to an 
equivalent thickness of water (see 
map on page 3).

Recharge in groundwater 
systems is often unknown and must 

can be estimated if gravity and depth-
to-groundwater data are collected at the 
same location (see graph below).

The unique relation between 
aquifer-storage change and gravity 
change (regardless of depth to 
groundwater or storage coefficient) 
and the well-known, unchanging 
region of measurement sensitivity 
make gravity methods a powerful 
tool for hydrogeologic investigations. 
From a practical standpoint, gravity 
measurements are completely 
noninvasive and have none of the 
permitting requirements or potential 
for contamination that exist when 
drilling groundwater wells.
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As this graph shows, gravity data can be used to 
calculate specific yield in an unconfined aquifer. The 
specific yield is the slope of a best-fit line relating the 
change in storage (volume of water per unit area) as 
estimated by the change in gravity to the change in 
groundwater level (U.S. Geological Survey data from 
Mesilla Valley, New Mexico).

For more information contact: 
azgravity@usgs.gov

or

USGS Arizona Water Science Center 
Director at dc_az@usgs.gov

https://www.usgs.gov/centers/az-water

https://answers.usgs.gov/

1-888-ASK-USGS (1-888-275-8747)

More information on the USGS 
Southwest Gravity Program (including 

a complete bibliography) is also 
available at:  

https://go.usa.gov/xqBnQ
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